2.Биоэлектрические явления в возбудимых тканях. Потенциал покоя и механизм его формирования.

 

Ионно-мембранная теория потенциала покоя и потенциала действия.

Мембранный потенциал/потенциал покоя – разность потенциалов между наружной и внутренней стороной этой мембраны (сравнение содержания калия и натрия во внутренней и внешней среде клетки).

При этом наружная мембрана несет на себе положительный заряд по отношению к внутренней ее стороне.

 

Трансмембранное распределение ионов.

Концентрации основных одновалентных ионов – хлора, калия и натрия – внутри клетки существенно отличаются от их содержания в омывающей клетки внеклеточной жидкости.

- главным внутриклеточным катионом (положительно заряженным ионом) является калий;

- внутриклеточные анионы (отрицательно заряженные ионы) представлены преимущественно остатками аминокислот и других органических молекул.

 

- основной внеклеточный катион – натрий;

- внеклеточный анион – хлор.

 

Такое распределение ионов создается в результате двух факторов:

1.  Наличия отрицательно заряженных органических молекул внутри клетки.

2.  Существования в клеточной мембране систем активного транспорта, «перекачивающих» натрий из клетки, а калий в клетку.

 

Активный транспорт ионов/ионный насос – механизм, который может переносить ионы из клетки или внутрь клетки против концентрационных градиентов (локализован в поверхностной мембране клетки и представляет собой комплекс ферментов, использующих для переноса энергию, освобождающуюся при гидролизе АТФ).

 

Если такие небольшие ионы, как калий, натрий и хлор, клеточная мембрана легко пропускает, то органические анионы, например аминокислот и органических кислот цитоплазмы, слишком крупны и не могут пройти через мембрану. В связи с этим в клетке накапливается значительный избыток отрицательных зарядов (органических анионов). Эти заряды препятствуют проникновению в клетку отрицательных ионов (хлор), но притягивают в нее положительно заряженные катионы (натрий, калий); однако большая часть поступающего в клетку натрия немедленно удаляется натрий-калиевым насосом.

Быстрое удаление натрия приводит к тому, что в клетке накапливается только калий, который притягивается отрицательными зарядами органических анионов и накачивается натрий-калиевым насосом.

 

Избирательная проницаемость клеточных мембран.

Мембраны имеют ионные каналы. Ионные (селективные) каналы пропускают определенные ионы. В зависимости от ситуации открыты те или иные каналы.

В покое открыты калиевые, а натриевые – практически все закрыты.

 

В нервных клетках всегда работают насосные механизмы, которые переносят ионы против градиента концентрации.

Градиент концентрации – разница между концентрацией от меньшего к большему.

 

Измерение клеточных потенциалов.

Между наружной и внутренней поверхностью всех клеток существует разность потенциалов.

Потенциал покоя варьирует от -40 мВ до -95 мВ в зависимости от особенности той или иной клетки.

Потенциал покоя нервных клеток обычно равен от -30 мВ до -70 мВ.

 

1.  Мембранный потенциал быстро определяют, измеряя разность потенциалов между двумя одинаковыми электродами, один из которых введен в клетку, другой помещен в омывающую ее жидкость. Электроды соединены с усилителем, увеличивающим амплитуду регистрируемого потенциала; эта амплитуда определяется при помощи измерителя напряжения типа осциллоскопа.

2.  О существовании электрического заряда на поверхностной мембране в физиологии известно очень давно, но только обнаруживали его  другим способом – в виде так называемого тока покоя.

Ток покоя возникает в любой живой структуре между поврежденным ее участком и неповрежденной поверхностью.

Если перерезать нерв или мышцу, и один электрод приложить к поперечному разрезу, а другой – к поверхности, соединив их с гальванометром, то гальванометр покажет ток, который всегда течет от нормальной, неповрежденной поверхности к поперечному разрезу.

Ток покоя и мембранный потенциал – проявление одного и того же свойства мембраны; причина появления тока покоя заключается в том, что при повреждении клетки фактически возникает возможность соединить один электрод с внутренней стороной мембраны, а другой – с наружной ее поверхностью.

В идеальных условиях при повреждении должна была бы регистрироваться разность потенциалов = мембранному потенциалу. Этого, как правило, не происходит, т.к. часть тока не идет через гальванометр, а шунтируется по межклеточным пространствам, окружающей жидкости и т.п.

 

Величина трансмембранной разности потенциалов, которая может быть создана таким процессом, предсказывается уравнением Нернста:

Еm = ((R*T)/F)*ln([K]вн/[K]нар).

Еm = -59*ln([K]вн/[K]нар).

 

Rгазовая постоянная.

Tабсолютная температура.

Fчисло Фарадея.

[K]вн:[K]нар – отношение концентрации калия внутри и снаружи клетки.

 

Концентрация калия снаружи – в межклеточной жидкости – примерно = таковой в крови. Внутриклеточную концентрацию можно примерно определить, пользуясь некоторыми аналитическими приемами либо измерениями с помощью калий-селективных электродов.

В опыте получаются несколько меньшие величины (-60, -70 мВ), чем теоретические (-80 мВ), т.к. мембрана не является устройством, идеально различающим ионы.

Ионы натрия в небольшом количестве проникают внутрь клетки и заряжают внутреннюю поверхность мембраны положительно, создавая встречную разность потенциалов. Хотя эта разность незначительна, она может снизить истинную величину мембранного потенциала.

 

Условия формирования ПП.

Потенциал покоя – заряд на мембране в состоянии покоя.

Одним из основных свойств нервной клетки является наличие постоянной электрической поляризации ее мембраны – мембранного потенциала. Мембранный потенциал поддерживается на мембране до тех пор, пока клетка жива, и исчезает только с ее гибелью.

 

Причина возникновения мембранного потенциала:

1. Потенциал покоя возникает прежде всего в связи с асимметричным распределением калия (ионная асимметрия) по обе стороны мембраны. Так как концентрация его в клетке примерно в 30 раз выше, чем во внеклеточной среде, существует трансмембранный концентрационный градиент, способствующий диффузии калия из клетки.

Выход каждого положительного иона калия из клетки приводит к тому, что в ней остается несбалансированный отрицательный заряд (органические анионы). Эти заряды и обуславливают отрицательный потенциал внутри клетки.

 

2. Ионная асимметрия является нарушением термодинамического равновесия, и ионы калия должны были бы постепенно выходить из клетки, а ионы натрия - входить в нее. Чтобы сохранить такое нарушение, необходима энергия, расходование которой противодействовало бы тепловому выравниванию концентрации.

Т.к. ионная асимметрия связана с живым состояние и исчезает со смертью, это говорить о том, что эта энергия поставляется самим жизненным процессом, т.е. обменом веществ. Значительная часть энергии обмена веществ тратится на то, чтобы поддержать неравномерное распределение ионов между цитоплазмой и средой.

 

Активный транспорт ионов/ионный насос – механизм, который может переносить ионы из клетки или внутрь клетки против концентрационных градиентов (локализован в поверхностной мембране клетки и представляет собой комплекс ферментов, использующих для переноса энергию, освобождающуюся при гидролизе АТФ).

 

Асимметрия ионов хлора тоже может поддерживаться процессом активного транспорта.

Неравномерное распределение ионов приводит к появлению концентрационных градиентов между цитоплазмой клетки и наружной средой: калиевый градиент направлен изнутри наружу, а натриевый и хлорный – снаружи внутрь.

Мембрана не является совершенно непроницаемой и способна в определенной степени пропускать через себя ионы. Эта способность неодинакова для различных ионов в покоящемся состоянии клетки – она значительно выше для ионов калия, чем для ионов натрия. Поэтому основным ионом, который в покое может в определенной мере диффундировать через клеточную мембрану, является ион калия.

В такой ситуации наличие калиевого градиента будет приводить к небольшому, но ощутимому потоку ионов калия из клетки наружу.

 

В покое постоянная электрическая поляризация клеточной мембраны создается в основном за счет диффузионного тока ионов калия через клеточную мембрану.

 

Значение потенциала покоя.

1.                  Применение микроэлектродной техники позволило определить основные свойства нервных клеток всех отделов мозга, выяснить природу возникающих в них активных процессов и установить закономерности синаптических связей, объединяющих эти клетки.

2.                  Наличие ионных градиентов и постоянной электрической поляризации мембраны является основным условием, обеспечивающим возбудимость клетки. Создаваемый этими двумя факторами электрохимический градиент представляет собой запас потенциальной энергии, который все время находится в распоряжении клетки и который может быть немедленно использован для создания активных клеточных реакций.

 

 

Hosted by uCoz